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"Semi-Stationary Clearing Processes"

Errata:
lln.l T n I°-1 T
P. 1, 1. % replace " I by "I
: i iy,
pP. 2, 1. 1b: insert "it" between "is" and "true"
p. &, 1. 14: should read: "X (tl. + U)yeeey, X (tk, + u)"

P- 6, 1. 10:  Replace "B, by "B 1. 1t "...f (A +T, )"
P 7, 1. 6b:  Replace "X _, (& )" by "X _, (4 )"

p. 8, 1. 1: " -¥[o,T)"

hE L R s l:f:° £ (X (u) d/EW..."

p.10, 1. 6:  Replace ":'11‘(')" by "‘.1‘3(:)"

p-11, 1. 1:  Replace "Theqpgm 3.4" by 'Theorem 3.5"
1. & l‘pluo”p(vo>n)"by"l’(ﬂo>u)"

p-12, 1. M: should read: "Y (A + t, w) = Y(A, otu)"

p.13, 1. 2:  Replace "EY(1)" by “EY(1)"

S p-16, 1. 1b: Replace "; (@) by ™Y (n),

"17. 102‘3‘ mm “; (‘)ﬂ b’ "! (ﬂ)“
and "Y" by "™¥Y".
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A clesring process describes the net quantity in a service
system (e.g. a batch service queus or dam) which receives an
exogenous random input over time, and has sn ocutput mschanism that
intermittently clears randos quantities from the system. A semi-
stationary clearing process is strictly statiomary over its random
clearing epochs. We describe the asymptotic distributions of such
processes and show how they arise in limits of certain functionals
of these processes. We identify soms clearing processes with uni-
form asymptotic distributions. This is true for modulo c clearing
vith a stationsary input if the Palm probability is used rather than
the usual probebility. Ve also present a.tnctunl central limit
1aw and law of the iterated logorithm for clearing processes, as
well as a result on the convergence of a sequence of such processes.
Key words: Service systems, semi-stationary processes, uniform
ssymptotic distributions, Pala probsbilities, functional limit laws.
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P m
Memy stochastic imput-output systems, such as batch service queues,
dams, iaventories, computer files, demsnd-respousive systems, sad quality
- control systems, cas be modeled ss a clearing process, which we define as
follows. A systes receives an isput over mueotau to a nondecreasing
coutinuous~tims stochastic process Y = (¥(t): t 2 o} such that Y(t) is the
cumulative imput wp:to time t and Y(t)+ o+ a.s. BRandom questities Q ‘', Q,°,
. are clesred from the system at epochs T; < T, S ceeo Wpare T, *'= 8.8,
by the following rule. After the n-th clearing at tims T (T,2:0), the
quentity ia the system accumulates for a time A wotil it unb::la random
level Q, 1.0. A = faf {u20: (T +uw -5 2Q) m:"'-ufo Q'
After s random (service or processing) time B, 1.e. at the epoch T_,, =
‘l'll *O'A.' 0'..".\“1!7 Qif‘i-"ll ‘cleared from :umu-.m 0« Q" j.Q‘-
The pet quantigy dan the system over time is deecribed by
X(e) = Y(g) ~ 8 szf.Q I;G‘Jﬂt
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The n-th cycle of X, during the time interval [‘l‘ 1) is described by
x‘(u) » Y(‘r‘ +u) - sn for 0 £ u < w

=0, for u 2 w
Where W« Ty41~ Tyc We call X a clearing process. When Q- Qn' =-c
and ‘n = 0 a.s. for alln 20, we call X a modulo ¢ clearing process.
In such a process, every time the net quantity in the system reaches the
level ¢, ¢ units of quantity are instantaneously removed.

We shall assune throughout this article that “n) is a strictly
stationary sequence of random elements (X is stationary over its cycles).
That is, the distribution of xﬂl"’ f o, + b “k) is independent
of h for any nouanegative reals- Cyseseh % and integers Bioeess By and h.
This is equivalent (Proposition '2.1) to X being semi-stationary over T (11].

Clearing meum"ﬁeu‘qn =g, »ln - 0, X(‘rn) = 0 (l.e., Qu' =Y (1'“_1) -
sn). and with xo.‘ 11;... independent and identically distributed (i.e., X
18 a regenerative process) are studied in (13] and (14).  In particular,

(€)seees X

their asymptotic behavior and optimal ‘clearing levels are investigated.
Possible applications of the clearing-process model are discussed at
length 1a [14].
In this article (Section 3) we describe the asywptotic distribution p
of X, ¥hich is defified by
p(i)'é‘ :: ‘t"»*:: 1, (X(a))'da a.e.

. where 1 .(.) 1s the indicator function of the Borel set B in R, the real

ousbers. We then show how p arises ia limits of functionals -

€18 £, (X(u)du. 1In Section 4 ve tdentify soms wodulo) ¢ clearing
pm-lonmtouc distributions are uniforn. Our aim here (vhich
u;n;uciutdchhntdy) htopmtd.oe-hu.'bthtotho“ly
mcnly!cra-umutnumvuh-utwqmu

“ph.ﬁm hmttcﬂu.n&utﬂtilth”ot
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Y has stationary incremsnts, then p(u uniform. A corollary to this is that
if Y has stationary ‘ncreme:ts and the a.s. limit defining p is taken with
respect to the Palm probability of Y ([3], [5] and (10]), rather than the
usual probability, then p is indeed uniform. These mulu supplement the
basic results in [8) and the references therein on the subject of identifying
processes that tave wniform asymptotic distributions. In our final Section 5,
we present a funetional central liwir law and @ functional law of the iterated
logarithm for X, as well ss a result on the comvergence of a sequence of
clearing processes.

A A

T

A A




2. The Stationarity Assumption

In this section we introduce more notation and discuss some conse-
quencer of our assumption that {xn} is stationary. We begin by defining
semi-gtationary processes.

Let X = {X(t): t 2 O} be a stochastic process with sample paths
in D = D[C,»), the set of functions from R, = [0,=) to R that are right
continuwous and have left-band limits. We aseociate with D the smallest
o~field that makes the projection mappings x + x(t) from D to R measurable
for each t ¢ R+. This is the same as the Borel o-field generated by Skorohod's
‘,1 topology, see [2] and [7]. We let ec denote the translation operator on D
defined by e‘ x (u) = x(t+u) for each u. The operator Ot 1is measurable since
x+0 x (u) 1s measurable for each u.

The process X is called strictly stationary if the distribution of
’“F:ﬂ‘.’--"“‘x 4+ y)is independent of u for all t].""'tk’ That is, if
eui and X are equal in distribution for each u. (Hereafter we use 'sta-
tionary” to mean “strictly stationary.")

The process X is called semi-stationary over T = ('!'n: n 20}, a

random sequence with T = 0 and w e Tnﬂ -T,20a.s., if the distribution
of X(tl + Tnlﬂ‘).ncc.‘(tk + Tnkﬂ), unl preep “Ilk'"l

is independent of h for eny ¢t veessty in l+ and integers Bypecesfy and

h in l*. These and other types of semi-stationary processes are discussed

in [11]. Similar to Theorem 2.2 in [11], the following are equivalent

statements:

(1) X is a semi-stationary process over T.

(11) {(ernx.\ln) t n 2 0) is a stationary sequence (of random elements of
D.x R).

(114) (un.w‘) : n 2 0} 1s stationary sequence, where X (t) = X(T +t)

for t in (r‘.rﬂl). and Xn(t) = 0 elsevhere.

4
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(1v)' For any £ : D + R the process X'(t) = f(etX) te R+, is semi-

stationary over T.

We shall frequently use,without mention, the well-known fact that
(1) 1s equivalent to (iv) for stationary processes. This by the way, 1is
the key to proving the above equivalences. Note that a semi-stationary
process X over T in which ( (X,,W,) :n 2 0} are independent and identically
distributed, is a regenerative prccess with regeneration timea ’l‘n.

For the remainder of this article we assume that X 1s a clearing
process as described in Section 1 with clearing levels Q,{" clearing quantities
Qn' and clearing times Tn' Our assumption that the cycles (Xn) are station-
ary has the following characterization.

Proposition 2.1. The sequence (Xn} is stationary if and only if X is semi-
stationary over T.
Proof. For each n > 0 we can write

“n =0 if Xn(.) =0

= inf {u> 0 : Xu(u) = 0} otherwise.

That is "n - f(xn) wvhere f is a measurable function from D to R,
Consequently, 1if (xn} 1s stationary, then ((xn ,wn)} is stationary and so
X is semi-stationary over T. The converse assertion is obvious..

Note that the stationarity of {xn} implies that wn-An + nn (n20) 1s
a stationary sequence, and that Y(0) and X(Th) have the same distribution
for each n. We shall contirue this discussion after we define semi-sta-
tionary random measures.

Let M denote the set of pcsitive measures on R, that are finite on
compact sets (i.e. Radon measures). For u ¢ M we write yA or u{A} as the
u-measure of A in B , the Boral sets of R , and we let u(t) = u[0,t] for
t ¢ R denote the cumulative distribution function (c.d.f.) of u. Note
that u(.) ¢ D. We associate with M the smallest o~field that makes the




mappings u + yA for A ¢ B+ measurable. This is the same as the Borel
o-field generated by the vague topology on M, [1]and [6] . As above, we
let 6, denote the translation operator on M defined by etu(A) = u{A + t}
for A e 8+ and t € R . A random measure { on R _1s defined to be a measurable
function from a probability space to M. If EA is an integer a.s. for each
AcB 4> then £ is a point process. Some basics of random measures are
discussed in [6] .

Let € be a random measure on R*. The £ is called staticnary if the
distribution of £ {A1+t)..... E {Akﬂ:} 1s independent of t for all A,,...,
A, in B _and t € R.. The £ is called semi-stationary over T= {T.n} 1f the

distribution of E{Alﬂnl-ﬁh}""' E{A'ﬂnkﬁ} ’ "nl.g.h""'"nkm is independent

of h for each Al....,Ak 1n8+ and integers LR and h.
Similar to the above, one can easily show that the following statements
are equivalent:
(1) £ is a semi-stationary measure over T.
(11) { OT E,Hn) : n 2 0} 1s a stationary sequence.
(111) {(€:.Wn) : n > 0} 1s a stationary sequence, where
gnA = E((MT“} n "n' n+1)} for A ¢ 8+.
Another important concept we use is that of ‘an inverse of a measure.
Let U_ = {ueh : WR, = =}, which 18 in M. We define the inverse of ucll_ to be
the measure {I vhose c.d.f. 1is
fi(t) = inf(s > 0 : u(s) > ¢t} for t e R_.
The mapping u + f# from M_ to M_ 1is measurable. This follows since for
each o and ¢t in R the set
{ueM_ :0(t) < a} = (ueM  : w(a-) > ¢}
isameasurable set in M_, which means that u + {i(t) is measurable for each t.
We now show how the stationarity of the cycles {xn} of X is related
to the structure of the imput process Y. To this end we shall view Y as a




c.d.f. of a reandcm measure which we also denote by Y. Note ﬂut'; 1s also
‘,;,j a random measure since the inverse mapping is measurable.
Proposition 2.2. If (xn.o“') is stationary, then Y 1s a semi-stationary
measure over T (m21), and f is a semi-ststionary measure over-
T,*= ¥[0,T)i(n 3 1)
Proof. For each n > 0, let

Y (t) = YIT , T +tl for0gt W

B r['r T for t > Wn.

)
n+l
Note that Yn(.) - 0 1f "n = 0. - By the definition of xn we have for
.°. e« Wn.

!n(t) - xn(t) + s'n - Yo, rn)'

"E®) -X 0P rq,

and

YL = X0 < X G y) $ Qg for & 2 W,
In proving Proposition 2.1 we showed that "n is a msasursble function of xn.

| ]

It then follows that L is a -uunblo,f\nctiou of (x‘. n-l’Qn-l} for each
n2l.

Consequently, if (l Q‘) is stationary then (Y , W ) (n>1) 1s
stationary, and by the abm comments, this is equivalent to Y being semi-
stationary over Tn (m > 1).

To prove the second umttn firet note that forn 2 1, 'r;-

and so

X 1Mpy) +8 a1
V" T - T KO - XV l’*qn-x
Now let

T(e) =Y (T8, TR4t] forOge <
-rl'rt. ) fott?,‘l'. : ,
mmw-do;t<ﬁit¢oumbyﬁopmtmotunmtlnt

&)

P
y
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§-(t).;(r;+t)-§[).r;)
® iof {u:!(u)>‘r=*t}-'rn
= {inf {u: Y('r-m)»'r*-o-t}
e inf (u.x(u) n-l(" 1)--in+t}

Thus, Y and wh are weasurable functions of (X n-1? x Qn-l.) for each
n 2 1. The argument for the first sssertion now applies to yield the
second assertion.
Proposition 2.3. The (xn. Q::} is stationary 4if either (1) Y 1s a semi-
stationary messure over T (n 2 0) with Y(0) = 0 and Q." - Y(‘l’ ,T 11 for
each n 2 0, or (u)!n.-d-ontiourywnrcmrs (n 2 0) and
Qnﬁonmdln-Ofotng_O.
Proof. This proof is similar to that for Proposition 2.2. Whean (1) holds
use the representation

X () =Y([T, T+ t) for 0 <t <W.
And vhen (11) holds use T = Y [0, 5,) and the representation

X (€)= X(T 4¢) - § = tnf {w: ¥(u) > T4t}

w dnf (v: ¥ (sn. Sn#v] >t}

for 0 cec<W =Y [sn. 3n+1"

3. Asysptotic Distributions
In this section e describe the asynptotic distribution of the clearing
prouu X, and then show how it utus in limits of certain functionals of X.
rem 3.1, Suppou (X}umcr.odicouumryuqmmdﬂ<¢. Let
pl0,x] = E min {Y(x), W )IIH for x ¢ i+.
Let f be a Borel funcuon'fro-l’u R such that
(3.1) Eouwp (|/s(X(u)dul: 0 st e W} <=
Then as t + =, o
(3.2) ¢ "f‘:(x(um * B s i
(3.3) S X(u))du + p(8) .5, for each B¢ B .

2 ' k]
8




Remarks 3.2. The above assertions hold 1if (xn) is not ergodic. In this
case, the expectations in the definition of p are conditional expectations
conditioned on the invariant o-field of (xn).
Remark 3.3. Note that for modulo ¢ clearing processes

p[o.xl-l!(x) / !! [0,e) foro<x<c.
Proof. Under the hypotheses, 1: foum by tho auodic theorem for sta-
tionary sequences that

1 T n-l. tk+1

r; m (w))du = n~}

c(x,(umu / @t )

+E .w° £ w))du/EW, a.8. as n + =,
Uotnc the change of variable formula for integrals, we have
I °6(X (u))du = s £(Y(u)) I[o W ’(u)du = [/f(x)dE(x),
vhere :
Elo,x] = MO cu g W : Y(u) g x}
. sup {o<u<w r(u)«:}--u{!(x).u)
and )\ is the Lebesque measurs. Taking the expectation of the latter integral,
ve then have
. I:nl(!a(u))du + 1 E()dp(x) a.e. a8 0 e,
In viev of this and (3.1), an application of Corollary 5.1 of [12] yiclds
(3.2), The assertion (3.3) is & special case of (3.2) iam which (3.1) 1s
satisfied since
Itl' (X(u))du < W, forogt <V,
Theorem 3.4. Suppose (x') 1s an ergodic sequence snd BN < =, Let
£,(t ¢ R,).be Borel functions from R to R such that |f (x)| < §(x) where
¢ satiefies (3.1), end £ (x) + t(x) for p - a.e.x, Then
3.0 E g e i)t o, SERRE) ,m; -t
Proof. Clesrly . AT o ek
i 1° £, 0w wh. }’“’t mmu ™t (-‘t:'a;m-»m

mu(c) =oup(n : T <tl. lhucuewummh (as we did in
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the last proof), the first integral can be written as
s
R e TRl B R

0
vhere

€8 - 'l‘;l Zﬂ I, (X(u)du.
It is well-known that n'l‘rn + B a8, i;pllu t-lll(t) + No'l a.s.,
so that :"‘ram +1 a.s. By Theores 3.1 ve have £y (. B = p(B) a.s. for
each B¢ 8+ and (3.2) holds for g. Thus it follows by the generalized
dominated convergence theorem in [9, p. 230] that the integral ia (3.5)
converges a.s. to [ £(x)dp(x). V¥Now the assertion (3.4) will follow upom

showing that
-1 ,t

(3.6) . By ¢
Tae)
To see this let

t 2 .
M = swp Ur‘ g (X(u)du : ¢ts ltn. 'rnﬂ)}.
m:ll‘ is a stationary sequence and our assumption (3.1) says ml < =,
By the ergodic theores, a'liln + 0 s.s. Then (3.6) follows since

ft(l(l))du +0 a.8. a8 t > =,

(c)
This completes the proof.

The above results, as well ss those in Section 5, hold for any semi-

Yt x)ee] g () ) Iy ) > 0 s

stationary process that arises in conjunction with X. For u’h the
processes

U(E) =t - Ty amd V(t) = Toeew 1 - s
vhere N(t) = swp {n: T < t}, are each seai-stationary processes over T,
since (W ) 1s statfonary. ‘The U(t)and V(t) represent the times since the
last clesring before ¢, snd the tiwes to the maxt clesting after t, respect-
ively. Similar to Theorea 3.1, we have the following result, which 1is &
generalizstion 10 & vell-known result for Tenewal procesess. -

4y - wldidyay Yo peasd gyretl-o by » % o e o b}
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Theorem 3.4. Suppose (Hil is an ergodic outi.mty sequence vith B < =.
Then

llltf!

t+e

J(UCs))ds = 14 el ik

t+e

1(V(s))ds

{o,x {o,x

« @) /X p(i > u) dusis. forxenm,
The results here and in Section 5 also hold for fumctionals of several
processes such as for t 1 I: f(X(.).n(i).V(o))do.

4. Modulo ¢ Clesring Processes Having Uniform Asymptotic Distributions
In this section we assums that X is a modulo c clearing process

(1.a. Q"‘-Q.-cndl = 0). Amchlmnhuchnrtupmmu
MGHOn'C.Q.'Y(T. ),B = 0 (for n'2 0) and either Y is .continuous
or Y has only unit jumps and c is an integer. We know from Remark 3.3
that the asysptotic distribution of X is

(4.1) pl0,x] = EX(x)/BY(c-) for x ¢ [0,¢).

Our aim here is to give some sufficient conditions on Y for p to be a

For the special deterministic case in which Y(t) = at for some a > 0, it
obvicusly follows that p is uniform. This might lead one to conjecture
(without hﬂh. (4.1)) that if Y 1is a stationary ‘n_nén msasure, vhich
implies EY(t) = at, then p would be wifera. This, however, even under
the additional assumption that Y has independent increments, is false [13].

S AN N PR YN T By

Our major result here (Theorem 4.3) asserts that, under eome minor conditions,
this conjecture is indeed trus if the a.s. limit is taken with respect to the
Palm probability of Y rather than the usual probability. Theorem 4.3 10
obtained from the following Theorems 4.1 and 4.2.
Looking at(4.1) one can see that 1¢ 14 the linssrity of EY(x) father than
that of EY(t) that yuu- a wiforn p. More specifically, we hive the
following result. N Shons
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Theores 4.1. If Y 1s a stationary random measure such that (X } is
ergodic and EY(1) < =, then p is uniform on [0,c).
Proof. Since Y is stationary, then it 1s also semi-stationary over S =nc.
Then from Proposition 2.3 and Theorem 3.1, we know that p is given by (4.1).
Now the stationarity of Y isplies that

ﬁ(o.x] - x 8;(0,1] for each x > 0.

Aleo Y {x} = 0 a.s. for each x > 0, since
EY (x} = E lin ?(:-a-l.xl
= E Y(0,x] - 1im EY(0,x-n 1] = 0.
From these observations and (4.1) it follows that p is uniform on [0,c).
A discrete analog of Theorem 4.1 is as follows.
+
Theorem 4.2. Suppose Y(t) = sup{n > 0: Z < t}, vhereZ = I Y and
—_—aSs n D e K
(Yk} is a stationary ergodic sequence of nonnegative random varisbles with
0 < EY, <=, and c 1s an integer. Then p 1s uniform on the set {0,1,...,c-1).
Proof. Under the hypotheses

EY(x) = B2, .. = [x#1] BY, for x 20,

x+l
vhere (u) dmt.: t.h: integer part of u. The rest of the proof follows
as above. '

For the next result we assume that Y is a stationary random measure.
With no 1oss in generality, we assume that the underlying probsbility space
Q 1s M, the ‘set of Radon measures on R, and that

Yast,v) = YA o ¥) i s
for each w ¢ 2, Ve let P denote the Pala probability messure of Y. This is
defined on the set i = {u ¢ M: u (0) = 0} by
PA) = B 3 1(0.N)4Y(e) for Ac F = anF, |

vhere F 1s the o-f1s1d ou 0, see (3], [3] or [10). The P is tuterpreted to
N““Mt“%hoﬂ!“ﬁt‘m‘uﬂnmtﬂnt‘ml

point of increase at 0."

o,
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Proof. If Y 1is a stationary measure and Y(t) is a.s. continuous, then from

Theores 4.3. ‘Suppose Y is a stationary random msssure such that ‘

(Xn} is ergodic and EY(1) < =, If Y(t) 1s a.s. continuous, then for
each B¢ B,

.2 1 s (x(u))du + p(d} P - ais., vhere p 1s unifors on [0,c).
If Y is a point process whose stoms are unit masses and ¢ is an integer,
then (4.2) holds where p is unifors on (0.1;.‘...:-1}.

(3, p. 218) ud'(ulnmmtiu‘ouumrymonm Palm
probabilicy space (2,F,P). Then (4.2) follows from Theorem 4.1. The
second assertion follows similarly ficm [3) and {15]) and Theorem 4.2.

The assertion (4.2) with the Palm probability P, means that X 1s uni-
foraly asymptotically distriduted, conditioned on the event that Y has &
point of increase at 0. The latter insures that the firet cyele of X
begins with a point of increase of Y, just as the subsequent cycles do
by the nature of clearing wvhen a given level is attained.

The above result is nicely illustrated by the classical economic order
quentity (E0Q) inventory model {16, p. 803), which is.widely used in
industry. This model describes an inventory system in which & initial
quantity c is placed in inventory snd as time passes the inventory declines
at a constant rate & until it reaches sero, at which times another quantity
c is immediately placed in inventory. This cycle is repeated indefinitely.
The inventory lavel over time is given by

Z(t) = c - X(t) fort 20,
vhere X is our modulo ¢ clearing process with Y(t) = at. The quantity c ‘
(ﬂnmhumbyc-m-mmmtoform.mutyx
is K + bx, and h 1s tlnmto! hou!.um -u of umurynt -u time.
Mbsﬂa!nehbmlumpmmtmmnuhmmlml
over time is ¢/2, which !o_ll@ ltno¥;§pﬂonly mtotteany distributed.

e




It appears that this inventory model should also apply when the demand (our Y)

is a stationary random messure with EY(t) = at. We can now say (knowing

Theorem 4.3) that it does apply vhen demand occurs either conmtinuously or

in uanit jusps and when one starts viewing the process vhen a demand occurs.
We now return to the case in which Y has stationary independent increments.

We know that p is generally not uniform, but it is for the special case

described aa follows, vhich is from (8).

Remark 4.4. Suppose X 1s a modulo 1 clearing process, vithout the assumption

that (xn) is stationary. If Y has stationary independent increments such that

Y(0) = 0 a.s. and there is no rational number r for which all the Y(¢t)'s are

a.s. integral multiples of r, then X is uniformly asymptotically distributed.
Another genersl result from (8] mt applies to modulo c clearing (without

our stationarity sssusption) i{s as follows:

Remagk 4.5, 1If there is a function ¥y from R,to R, such that y(x) + 0 implies

x + 0, and for some a 2 0,

et e)eu - e hyae < .,
s 0 (o,x)
then X is wiforuly asysptotically distributed.
5. Punctionsl Limit Lawe and Convergence of Sequences of Clearing Processes
Ve now present & functional central 1init law and a functional law of
the iterated logarithm for semi-stationary clearing processes. For this we
assume that X is a clearing process that satisfies the following conditions:
1) (!n} is a stationary .nm sequence {2, p. 166] with

el e,

n
(14) u: 7oy
We alec assume that f is & Borel function from R to R such that:
(411) B¢ < =, vhere 1, = ovp (| k £(x(w))du 1 ¢ ¢ [T, T,,))

yoRmvas v rapt Mg L
leta=Ty A=a l!ol(:(u))h-l

14




&
¢
&
£
é

0, ¥2) = (W, r‘ LU m)
r
From (1) and (11) it follows that: {(! & ! ): n 2 0}

-
uatuti.mryo-dﬂumvdthIOI -,nli
o=l

and !(11*!2 ) <o for 1,1 = 1,2 [2,p. 166]. Purthermore, by (2,

Theoren 20.1], the following quantities exist

o, Bty + ¢ s iedy + 1z iy ).
M B LG T B e R g
For the following result we assume that
nt
2 (e) = M2 ( S ER()du - aat)

2 '(e) = a722 (T(,q) = Dat) for €3 0.

Theorenm 5.1; If conditions (1) - (111) hold and 9, and 0,, 8Te positive,

then
&) > W2, oy
vhere (W', W’) 1s a Veiner process in'D x D such that (¥.(1), W2 (1))
has zero mean and covarisnce matrix {a“}.
Proof. This follows from Corollary 5.2 in [12].
httlhmtrémltn“dnt'
2, %(t) = ,;1 ( :“tf‘(:(u))wn for ¢t 2 0,
t 2 0,,° Log Log u, sallid T4t deabes the set of absclutely
continuous functions x ¢ D such that x(0) = 0 and lx'(e) de' < 1.
Theorem 5.2. 1If conditions (1) - (111) hold and o), > 0, thes {Z #: n 2 3}
is a.s. relatively compact vith set of limit points {x(a*): =eK}.
Proof. let '
z l(t) = l I(“’ £ (x(u))du - At[.t,) fozr t 2 0.

From Corollary 3 in [ul. with obvious modifications, it follows that

MQI

J(zt:-g))u..o. nhuvuymvuhuuepohul.

msym-wmu(m)um
1‘ (l 1”) (n 1"!.)00..0.
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Thus the assertion follows by an application of Corollary 2.3 and
Remark 2.4 in (12].

For our next result we assume that X is a clearing process such that
(xn} is stationary. Ve lut x“). xm.... be a sequence of similar
clearing processes.

Theorem S.3. If.. foranynl, ...lklnd'k’l, :

(n) (
(x“..... x ‘) “‘1""' x_k)

then ;(" 2 X.

Proof. It suffices to show that x“‘) 2 X on D[0,s], for any X-continuity
point s, see [7]. Furthermore by Theorem 5.1 of [2] we need only show this
for nonrendon functions X™ end X. To this end let s be a continuity
point of X and p:l:k m such that 'r- > 8. We can always write

(n) (n)
X (t) = ¢ (t-T,)
Pty Wt

since xl(n), xz("..... bave disjoint supports. Then

‘) _ * (o) (@)
X e L) on [0,s8],
k=0 g k

vhere o denotes the composition operator and & (‘)(t) -t - r"" for t > 0.
Clearly, 'k(‘) + .k uniforaly on compacts, vhere 0 (t) = ¢t ~ ‘!k 1°
By the hypothesis and [2, p. 143] we have

x:-’ ° .k(" -+ xk o .k on D[0,s].

Since the latter limits (for 0 < k < m) have disjoint supports,
it follows by the eonttimtty ptopirty of:udi,tion in D[0,s], see [17], that

!(‘) » t !koO X onbto.ul.
k=1
thheoqhmlbcpmf.‘
Example 5.4. Omxndx(‘) (u>1)cro.odu10cchn1upnmmv1th
Moeetuhpum!ud!m. smou further thst
n : 4
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vhere tnl""' ‘u are independent random measures on R+, as in [6, p. 232],
such that ;(n) 2 '; wvhere ; is a Poisson process. By the continuity of
inverses [17] we have '(n) 2 Y. Using the representation of xn in the proof
of Proposition 2.3 it follows that the hypothesis of Theorem 5.3 is satisfied,
and 8o x(") g X
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